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This paper computes the electrical conductivity of a fully
ionized, épatially homogeneous plasma under the influence of a
uni form, periodically alternating electric field. The velocity
distribution of the electrons is determined by solving the
linearized Fokker-Planck equations. All the terms in the
collision integral are retained, including those representing
electron-electron interactions. The resultant values of
conductivity is expected to be valid in the range of frequencies

from‘zeto to below the plasma frequency.



I. Introduction

The purpose of this paper is to calculate the A.C. conductivity
of a spatially homogenzous plasma using the Fokker-Planck Equation.

The D.C. conductivity of a plasma has been calculated in the well-

(2)

known works of Cohen, Spitzer and Routly,(l) and Spitzer and Harm.

Their results are in good agreement with the later experimental

(3)

works of Lin, et al. Bernstein and Trehan compute the A.C.

. - . 4 .
conductivity assuming a Lorentz gas model.( ) The A.C. conductivity

of a real gas should approach that of a Lorentz gas at high

frequencies. - (See detailed discussions in Section IV.) Towaxd

. lower frequencies their departure is expected to increase so that

their ratio becomes nearly 2 in the D.C. limit, in accordance with
References (1) and (2). The recent works on A.C. conductivity by

(5).(6) . (7)

Dawson, et al consider the time variation of the two-
‘particle disﬁribution, which is necessary when dealing with A.C.
currents of ultra-high frequencies. However, the domain of
applicability of .their work is limited to freguencies much higher
than the collision frequency. Thus, a more precise calculation for
the low and intermediate range of w appears desirable and we proceed
to do this in accordance with methods to be describad in the present

paper. Our results, obtained by direct integration of the Fokker-

Planck Equation are compared to theirs in Section IV:
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We begin with the Boltzman Equation:

v el 2D @
or v t “c

" where fi is the distribution function of particles of type i,

(:iizk is the change of £; produced by collisions.
Equation (1; is deduced from Liouville theorem to describe
a many-particle system under two assumptions:

1) That the characteristic dimensions of the inhomogeneities
are much larger than the average impact parameter for the particles
participating in the collision,

2) That the characteristic time variation of the process is
much longer than the duration of an average collision, or in other
words,ia col}ision is completed and the correlation function is
“relaxed" before the distribution functién itself makes any appre-
ciable change.

It should be noted here that the term "duration of collision”
is different from the so-called "collision time"; collision time
is the time between two collisions. For pafticles interacting
through long range forces, this time may be regarded as the time
in which defléétions-gradually deflected the considered particle
by 90°. Duration of collision is the time during which an inter-
action takes place. In a plasma it is of the order wp-l. In

Figure 1 a time scale diagram is drawn, and the validity of our

calculation and those of Dawson, Oberman, and Ron are indicated.

)

r~4 . .
. b,
The explicit expression of(éﬁf-c depends on the nature of

the interaction force. In a fully ionized plasma, tha particles
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interact through the long range Coulomb forces. The cumulative
effect of "weak" deflections resulting from the relativ_ély distant
collisions ocutweighs the effect of occasional large dteflections
due to relatively close collisions, so one may neglect the contri-

bution by those very close encounters (1 _ encounters waich result

- in deflections of 90° or larger. -

Also, the effect of distant particles lying outside of the
Dcbye length XD may be neglected because of the shielding of inner

. . . 8f o
particles. Thus, in the computations of( l) . it is only neces-
ot
sary to consider the collisions with impact distance intermediate

ed | . . .
between Ap and b,, where b, = — 1is the impact parameter yielding

KT
o] . . .
a 90 deflection. The effects of these collisions are cumulative,

and the total deflection produced in an interval of time is similar

N . 6£5 .
to that of the Brownian motion; hence, one may expand ( ._].'.) in
: ' ot
powers Oof <AV>, where <AV> is the average velocity change due to

(1), (B)

collisions. This procedure leads to the follmng Fokker-

(9)

8f4 122 4 _B?.-é\ ’
by Rk e
(bt ) ‘ * Iz 2BVBV vavy - :

. m +m- ‘-o.' _‘. - -'l ‘
where )}.i'._.l Javigy @ IF-v1 (3)
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g = §.ra:;' £5(V)F-v| (4
4nzfe® mymyviniip.

and Ty = 1n - (s5)
mi? 2 (mj+m4) e?

The summation in h; and g sums over all species, mj is the

-

mass of the "i"th species, e is the electronic charge, }D-

1
4ﬂne€>
is the Debye length, and Vth is the relative thermal velocity.
In this paper we consider only plasma with singly-charged
‘ions. The extension of the present method to those with multiply-

charged ions is straight-forward.

II. Derivation of Equations and Formulae
If the distribution function £ has an azimuthal symmetry

about a certain axis, then, following Rosenbluth, MacDonald, and

(9)

- Judd , the collision term may be written down explicitly in

spherical polar coordinates in velocity space:

655\ ahj

e . 3 3%
— = ny{~ve[EvA—-] - v £ (1-p=) + (2v3) =22 [f 1
6t }c v /v oM >' ov3 aVa

+ (2v3)

129
2){auav -V 13!-1}]

a -~<
+ (2V3) Tl £, {-—v"‘(l—u")O 2
-\ ou?

3
(Zva)"i.é{fi{v'zu(]_-ua)a R A (1-u=)3 g _2v-gag} 7
ol 3“3 . 3V SudV ¢

-

- 2—:2- + ZHVT:' }J
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where W = cos § is the direction cosine between Vv and E. Equation (6)
is an exact expression of the Fokker-Planck Equation in spherical
coordinates for a distribution function with azimuthal symmotry.

We assume that the system is subject to a weak electric field

E e %" vhose direction lies along z-axis. Then following Chapmanca)

o

COwling.(lo) and Spitzer,(l) we expand £; in a power series of E:

£,5,8) = £ + 2oes P Ft) + E£i P Ft) # eeene (D)

o . . .
where fi( )(v) is a time independent Maxwellian distribution and
fi(l)(V.t), fi(z)(s,t), «+--.. are the perturbed part due to applied

electric field. When a steady state has been reached and no transient

current exists, the time dependent part of fi(j)(s.t) must be propor-

tional to elwt. Since the average energy imparted to the electrons

between encounters is small compared with their kinetic enerqgy,
the velocity dependent part of £ (3)(v t) can be wrltten as

my a
—==v® (J)
e 2KT Dpj ) (v)u. Therefore, we have

nafs mlva ‘
fi(j)(;;t) = YE;EETQE e KT (J)(v)ue wt (8)

Combining equations (1), (6)., and (7) keeping only térmsx

linear in E,, we obtain

(1) ‘ e, (1)

£. s - ) £

25 7 4+ & glutg g (O) o (o i | (9)
ot mji v - st c

(1)
/6fi‘ A _ : .
where \T—— - is the linearized Fokker-Planck collision integral.
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Sincz the ions' contribution to electric current is negligible
compared to electrons, we will consider only electron distributions
and drop the subscript i in the distribution function hereafter.

Substituting Equation (8) into Eguation (9) we find, after
some algebraic manipulations, the following second order linear

integral-differential équation:

D*(x) + P(x)D' (x) + Qx)D(x) = R(x) + S (x) (10)
. B 1 2x23' (x) : :
‘where P(x) = -2x “xtEm . (11)

-iBx3 + 2(1L + 3 - 2x33"') + 1

Q(x) = S = (12)
2ax%  8{2.4x°-2x%)
R = - - I (=) (13)
Ge) H(x) 317%H (x) ©
s{x) =..__.].'_6____.{x13(x) - 1.2xI5(x) --:‘c."Io(x) (1-1.2x’)} (14)
Bn%H(x) .
X . .
¢ (x) = 'ro e_Ya dy ' (15)
H(x) = &(x) - x8°(x) (16)
X . :
) =] yoeY ay (17)
B o
I (=) = J‘: py)e¥ &y - (18)
with @ = =EgXT/me®nlni A = \p/bo
- 2KT % NI )
x = v/ (=X B Wolnk | WG ¢

o . . .
where w, is approximately the 90 deflection time of a particle

" with thermal velocity. When w = O, Equation (10)* reduces

* Note that I («) is essentially the total change of mo-
- mentum of .electromns arising f:rom electron-ion interactions.
o (Continued on next page) -
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to Equation (8) of Reference €2%» which considers D. C. electric
conductivity.

In a D. C. electric field, tye electrons are not accelerated
in a steady state. Hence, the inertia force teim is zero and

I (=) =égfa,. ‘

IXIIX. So}ution of Equation

Equation (10) is a linear integral~-differential equation
whose unknown D(x) is a complex function of a real variable. The
present section will discuss the method of its solution. As will
be evident in what follows, .the procedure for ﬂumerical integration
is far from straight-forwaxrd.

On the one hand, we encounter the problem of the instability

' of the solution at small and at large x. 3ecause of the existence

of singularities in Equation (10) at x = 0 and at x = ®, a slight

‘deviation of D(x) at either small or large x, tends to be built

up quite rapidly. In order to obtain a physically acceptable
solution, it is required that D(x) does ﬂot,approach infinity too
fast, leading to infinite conductivities. The'starting'value of

D at small x can be obtained by means of a series solutiong.

Since the mutual electronic interaction cannot change the total
momentum of the electrons, I («), by Newton's second law, must
equal the total force exerted on the electrons by the applied
field minus the inertia force of electrons. This relation gives

us: 3PS

Io(=) = 3o - Pry(=)
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But because of the instability, we cannot proceed to integrate in
a step wise manner. To overcome this difficulty, we adopted a

scheme used by Cohen, Spitzer, and Routly.‘l) We shall refer to

their paper (Reference (I)) for full details.

On the other hand, we note that I (=) is no longer a known
quantity as it is in the case of D. C. conductivity; it depends on
the solution D(x) itself. We pfoceed as follows: Since we want
conductivities at aifferént frequencies, it is necessary to obtain
solutions for different values of ﬁhe parameter B. Wé begin with
a small value B = 0.05. Using an I, (=) taken from the D. C. case,
i.e. I (=) = 0.665, we obtain a solution to Equation (10) from
which we get a new‘I;(°). Next, we pass on to B = 0.1 using the
I, (=) obtained for the previous B. In this way, we proceed to ever
increasing values of B,vuntil the initial adopted I (=) and the
final calculated Ig(®) differ by no more than 2 per cent. This

occurs at B = 1.37. From this point on, we resort to a method of

" systematic trials. The initial and final I, (=) for all values of

B agree to within 2 per cent, which is considered sufficiently

accurate for the present purposes.

IV. Results and Discussion

The current is given by

T = - aVVE,(V.t) = AEge tIy(e) (19)
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where o I4(=) = Ia x*D(x) e'xa' dx
3k
3 ﬂ“m”"e’ in)
Since J = OE, we have the complex conductivity
¢ = AIz(=) . ~ = (21)
) 1 c ’ \ .
the impedance Z == = - (22)
.AI3(°°). . Ig(=)
the resistance R = % ReI3(®) _ cReIj(=) y R (23)
A lI3 (")Ia II3 (“’)F
and the - reactance X = .]_' InT3(®) - cImIz(=) ‘ ‘, (24)

A (e

with c=t=3 _1 Pen¥3e% 100 .
A 2 (2k7)¥ :

It may be remarked here that Athe A. c. conductivity dpends on
three fectors: |

1) The inertia of the conducting electrons. ‘

2) The mutual interaction among electrons and ions.

3) The mutual interaction among electrons themselves.

The mutual electronic interactions have no cdirect effect on

conductivity since the total change of momentum due to such inter-

actions is zero. Nevertheless, they alter the distribution of

- electrons and thereby modify_th_e effect which electron-ion colli-

sions and electron inertia have in impeding the current. When
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w is small, the conductivity is primarily determined by collisions.
The inclusion of electron-electron interactions reduces the con- -
ductivity by a factor of approximately two. As w increases and
beéomes of order Was this effect becomes less and less important
because there is then insﬁfficient time in each A. C. cycle to
allow an effective modificaticn of the distribution by electron-

electron interactions. When w well exceeds w,, we may neglect this

. effect and D(x) reduces to

) = —X
D, (x) = ————o (25)
T ,
and the corresponding conductivity becomes
og (x) = af (26)

ol +.%§x?

(4)

, of
If we further increase w, the inertiaj,electrons become

dominant. Then we may treat collision effect as a perturbation

" and obtain- ‘
B R
"5 = a0k - -
2, -.;.. 2 (8 + 3mis) . (28)

64 + 9ns®
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132 - 54
Re A 9m (1 9n33) (29)
1 64
= = 12 -
Xo =3 ™3 (1 = | . (30)

In fable I the values of D(x) for B = 1 are given and
compared with the corresponding values for the D.C..case obtained
by Spitzer and Harm.(z)

| In Table II the resistance, the reactance, ana the absolute
value of conductivity are given for various B from.-0 to 10. For
B > 10, ‘one may use ﬁquati n (26) to compute them. The erfor
will be within 2 per cent. Foxr B > 50 the collisions become
unimportant and Equation (27) —’(30) will give the correct values
to within 2 per cent. - However, thére the valiaity of the Fokker-

Planck Equation already beccmes questionable and one should use

Dawson-Oberman's values instead of ours.
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Table I

Values of D(x) for w = wg and w = 0

w = we w=20
x Re (D(x)) Im (D (x)) D(x)*
0.10 0.0005887 ~0.0002029 0.0008093
0.11 0.0009252 ~-0.0003438 0.001300
0.12 0.001376 -0.000542 0.001970
0.13 0.001956 -0.0008068 0.002847
0.14 0.00268 -0.001149 0.003955
0.15 0.00356 -0.00158 0.005317
0.16 0.00461 -0.00210 0.006955
0.17  0.00583 -0.00272 . 0.008886
0.18 0.00724 -0.00346 . 0.01113
0.19 0.008L4 -0.00431 0.01370
. 0.20 0.01063 -0.00528 0.01660
+ 0.22 0.01483 . ~0.00761 0.02347
0.24 0.01985 -=0.01048 0.03180
0.26 0.0257 -0.0139 0.04165
0.28 0.0324 . -0.0180 . 0.05304
0.30 0.0400 =0.0226 ~ 0.06601
0.32 0.0483 -0.0279 0.08057
0.34 0.0575 -0.0339 0.09672
0.36 0.0675 -0.0405 0.1145
0.38 0.0783 -0.0478 0.1338
0.40 0.0899 -0.0557 0.1548
0.44 0.1153 -0.07366 0.2015
0.48 0.1435 ~0.09436 0.2545
.0.52 0.1744 -0.1179 0.3137
0.56 0.2080 - ~0.1442 0.5792
- 0.60 0.2439 . =0.1734 0.4508
0.64 '0.2822 -0.2055 ~ 0.5285
0.68 0.3227 . =0.2405 0.6123
0.72 0.3652 -0.2785 0.7023
0.76 0.4096 -0.3196 0.7983
0.80 0.4559 - =0.3637 0.9005
0.88 - 0.5535 . ~0.4813 1.123
0.96 0.6570 ' -0.5718 1.371 .
1.04 0.7656 ~0.6957 1.645



1.12
1.20

1.28

1.36
1.44
l.52
1.60
1.76
1.92
2.08
2.24
2.40
2.72
2.88
3.04
3.20

0.8782
0.9937
1.111

1.2290
1.3457

1.4598
1.5693
1.7657
1.1915
1.9973
1.9513
1.8852
1.4266
1.2193
1.3105

. 21113

-0.8335
-0.9858

-1.1531"

-1.3359

-1.7500

-1.9820
-2.4962

. =3.0739

-3.7049

| -4.369%4

-5.0382
-6.2407
-6.6809

. -6.8066
=5.6758

1.945
2.273
2.630

3.017
2.435

3.887
4.375
5.465
6.728
8.190
9.880
11.83
16.62
19.53
22.74

£ 26.00
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Table II
The conductivity, the resistance and
; the reactance of A. C. current
r G/A R/c X/c
w/wea Real gas Lorentz gas Real gas Lorentz gas Real gas Lorentz gas
0. 1.734 2.0 0.577 0.333 0 0
0.05 1.729 2.880 . - - 0.577 0.340 . 0.045 0.070
0.1 1.713 2.653 o 0.577 0.354 0.089 0.130
0.15 1.687 . 2.430 0.578 0.367 0.134 0.185
0.2 1.651 2.233 0.579 0.380 0.178 0.236
0.25 1.608 -2.061 0.580 0.3S3 0.223 0.285
0.3 1.561 1.913 0.582 0.404 0.267 0.332
0.35 1.510 1.78« - 0.584 . 0.415 0.311 0.377
0.4 1.458 1l.671 0.587 0.425 0.354 0.421
) 0.45 1.406 1.572 0.5%90 0.434 0.397 0.465
‘ 0.5 ] 1.354 1.483 - 0.593 . 0.443 .. 0.440 0.508
0.55 1.303. . 1.405 0.597 0.452 0.482 0.550
. . 0.6 1.255 1.334 -0.600 0.460 0.525 0.592.
0.65 1.208 1.270 0.603 0,467 ° 0.567 0.634
0.7 1.164 1.212 0.607 0.475 0.608 - 0.675
0.75 1.122 1.159 . 0.610 0,482 0.650 " 0.716
0.8 . 1.032. 1.111 0.61l4 . 0.488 © 0.691 0.756
0.85 1.045 1.066 . 0.617 0.495 0.732 0.797
0.9 1.009 1.025 0.620 0.501 0.773 ©.807
- 0.95 0.976 0.987 0.624 0.507 .0.813 0.877
1. 0.944 0.952 0.627 0.513 0.853 0.916
1.1 0.886 0.889 0.634 . 0.524 0.934 0.996
1.2 0.834 0.835 : . 0.640 0.534 1.013 1.074
‘1.3 0.786 0.785 . = 0.645 0.544 1.094 1.159
’ l.4 0.743 0.741 0.650 0.553 1.172 ‘1.230
1.5 0.721 0.702 - 0.657 0.561 1.222 1.308
2. 0.560 - 0.557 . -0.672 " 04599 1.588 1.693
3. 0.408 0.398 0.711 . 0.655 2.335 2.453
4. 0.313 0.305 - 0.734 ' 0.696 3.086 3.207
5. 0.255 0.248 . 0.766 . 0.728 3.842 3.960
6. 0.214 0.211 0.784 0.754 4.601 4.710
¢ 7. 0.183 0.182  -0.790 - 0.776 5.380 5.460
8. 0.162 0.161 - 0.796 0.794 6.08 6.21 |
r 9. 0.144 0.143 ° 0.814 0.810 . 6.69 6.81
10.

0.129 0.830 - 0.824

7.51

7.5
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Figure Captions

rigure 1 The Ranges cI Validity of Computed A.C. Conductivities
Figure 2' A.C. Conductiivities
 Figure 3 Aa.C. Resistivities

Figure 4. A.C. Reactances



Figure 1

The Ranges of Validity of Computed A.C. Conductivities

— > Region one «

0 We wp
- Region two

w —»

The values of A.C. conductivity obtained in this paper is
valid in region one. When @ exceeds we —- region two -- the
values calculated by Dawson et.al.begin to be valid.

Hére @ is the collision frequency, ub is the plasma

frequency.
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